
Given circuit:
The \( 5 \, \Omega \) and \( 10 \, \Omega \) resistors are connected in parallel.
Step 1: Calculating the Equivalent Resistance
The equivalent resistance \( R_{\text{eq}} \) of the parallel combination is given by:
\[ \frac{1}{R_{\text{eq}}} = \frac{1}{5} + \frac{1}{10}. \]
Calculating:
\[ \frac{1}{R_{\text{eq}}} = \frac{2}{10} + \frac{1}{10} = \frac{3}{10} \implies R_{\text{eq}} = \frac{10}{3} \, \Omega. \]
Step 2: Current Division in Parallel Resistors
Let \( i_1 \) be the current through the \( 5 \, \Omega \) resistor and \( i_2 \) be the current through the \( 10 \, \Omega \) resistor. By the current division rule:
\[ \frac{i_1}{i_2} = \frac{R_2}{R_1} = \frac{10}{5} = 2. \]
Thus, \( i_1 = 2i_2 \).
Step 3: Calculating the Power Dissipated
The power dissipated \( P \) in a resistor is given by:
\[ P = i^2R. \]
The ratio of the power dissipated in the \( 5 \, \Omega \) resistor to the \( 10 \, \Omega \) resistor is:
\[ \frac{P_1}{P_2} = \frac{i_1^2R_1}{i_2^2R_2} = \left( \frac{i_1}{i_2} \right)^2 \times \frac{R_1}{R_2}. \]
Substituting the values:
\[ \frac{P_1}{P_2} = (2)^2 \times \frac{5}{10} = 4 \times \frac{1}{2} = 2. \]
Therefore, the ratio of heat dissipated per second through the \( 5 \, \Omega \) and \( 10 \, \Omega \) resistors is \( 2:1 \).
In the figure shown below, a resistance of 150.4 $ \Omega $ is connected in series to an ammeter A of resistance 240 $ \Omega $. A shunt resistance of 10 $ \Omega $ is connected in parallel with the ammeter. The reading of the ammeter is ______ mA.

Given below are two statements. One is labelled as Assertion (A) and the other is labelled as Reason (R):
Assertion (A): In an insulated container, a gas is adiabatically shrunk to half of its initial volume. The temperature of the gas decreases.
Reason (R): Free expansion of an ideal gas is an irreversible and an adiabatic process.
In the light of the above statements, choose the correct answer from the options given below:

For the circuit shown above, the equivalent gate is:
Let one focus of the hyperbola \( H : \dfrac{x^2}{a^2} - \dfrac{y^2}{b^2} = 1 \) be at \( (\sqrt{10}, 0) \) and the corresponding directrix be \( x = \dfrac{9}{\sqrt{10}} \). If \( e \) and \( l \) respectively are the eccentricity and the length of the latus rectum of \( H \), then \( 9 \left(e^2 + l \right) \) is equal to:
