The energy of a photon emitted during a transition from energy level $n_i$ to $n_f$ in a hydrogen atom is given by: $$ E = 13.6 \left( \frac{1}{n_f^2} - \frac{1}{n_i^2} \right) \text{eV} $$ For the transition from $n=2$ to $n=1$, $E_1 = 13.6 \left( \frac{1}{1^2} - \frac{1}{2^2} \right) = 13.6 \times \frac{3}{4} = 10.2 \, \text{eV}$ For the transition from $n=5$ to $n=2$, $E_2 = 13.6 \left( \frac{1}{2^2} - \frac{1}{5^2} \right) = 13.6 \times \frac{21}{100} = 2.856 \, \text{eV}$ The ratio of the energies is: $$ \frac{E_1}{E_2} = \frac{10.2}{2.856} = \frac{10.2}{2.856} \approx \frac{10.2}{2.86} \approx 3.57 \approx \frac{25}{7} $$