In an FCC (Face Centered Cubic) lattice:
- 8 corner atoms contribute \( \frac{1}{8} \) each: \( 8 \times \frac{1}{8} = 1 \)
- 6 face atoms contribute \( \frac{1}{2} \) each: \( 6 \times \frac{1}{2} = 3 \)
- Total = 1 + 3 = 4 atoms
In a BCC (Body Centered Cubic) lattice:
- 8 corner atoms contribute \( \frac{1}{8} \) each: \( 8 \times \frac{1}{8} = 1 \)
- 1 atom at center = 1
- Total = 1 + 1 = 2 atoms
Hence, the ratio is \( 4:2 = 2:1 \)