Step 1: Let the given points be:
\[
A(-2,\,3,\,5), \quad B(7,\,0,\,-1)
\]
and the dividing point be:
\[
P(1,\,2,\,3)
\]
Step 2: Assume that point $P$ divides $AB$ internally in the ratio $m:n$.
Step 3: By the section formula:
\[
P=\left(\frac{m x_2+n x_1}{m+n},\frac{m y_2+n y_1}{m+n},\frac{m z_2+n z_1}{m+n}\right)
\]
Step 4: Substitute the values:
\[
1=\frac{7m-2n}{m+n}, \quad
2=\frac{0\cdot m+3n}{m+n}, \quad
3=\frac{-m+5n}{m+n}
\]
Step 5: From the second equation:
\[
2(m+n)=3n \Rightarrow 2m= n
\]
Step 6: Hence, the ratio is:
\[
m:n = 2:3
\]