Given: - Disintegration rate, \( \frac{dN}{dt} = 10^8 \, {s}^{-1} \) - Half-life, \( T_{1/2} = 3.3 \times 10^{12} \, {s} \)
Step 1: Calculate the decay constant \( \lambda \) The decay constant \( \lambda \) is related to the half-life by: \[ \lambda = \frac{\ln 2}{T_{1/2}} = \frac{0.693}{3.3 \times 10^{12}} \approx 2.1 \times 10^{-13} \, {s}^{-1} \]
Step 2: Calculate the number of radioactive atoms \( N \) The disintegration rate is given by: \[ \frac{dN}{dt} = \lambda N \] Solving for \( N \): \[ N = \frac{\frac{dN}{dt}}{\lambda} = \frac{10^8}{2.1 \times 10^{-13}} \approx 4.76 \times 10^{20} \]
Final Answer: \( 4.7 \times 10^{20} \)
Arrange the following in increasing order of their pK\(_b\) values.
What is Z in the following set of reactions?
Acetophenone can be prepared from which of the following reactants?
What are \(X\) and \(Y\) in the following reactions?