The Arrhenius equation is:
\[
\log \left( \frac{k_2}{k_1} \right) = \frac{E_a}{2.303R} \left( \frac{1}{T_1} - \frac{1}{T_2} \right) \quad \text{or} \quad \frac{E_a}{2.303R} \left[ \frac{T_2 - T_1}{T_1 T_2} \right]
\]
Substituting the known values for the rate constants and temperatures into the equation. \(k_2/k_1 = 3\), \(T_1 = 290\,K\), and \(T_2 = 300\,K\):
\[
\log \left( \frac{3k_1}{k_1} \right) = \frac{E_a}{19.15} \left( \frac{1}{290} - \frac{1}{300} \right)
\]
we get:
\[
0.48 = \frac{E_a}{19.15} \left( \frac{10}{290 \times 300} \right)
\]
Activation energy, \(E_a\), by multiplying both sides of the equation:
\[
E_a = 0.48 \times 19.15 \times 290 \times 300 \quad \Rightarrow \quad E_a = \frac{0.48 \times 19.15 \times 290 \times 300}{10}
\]
Finally, calculate the value of \(E_a\). The result gives the activation energy in J/mol. After performing the calculation, we find:
\[
E_a = 79970 \, \text{J mol}^{-1} \quad \text{or} \quad E_a = 79.970 \, \text{kJ mol}^{-1}
\]