Step 1: Use the Arrhenius equation:
\[
\ln\left(\frac{k_2}{k_1}\right) = \frac{E_a}{R}\left(\frac{1}{T_1}-\frac{1}{T_2}\right)
\]
Step 2: Substitute the given values:
\[
k_1 = 0.02\,\text{s}^{-1}, \quad k_2 = 0.07\,\text{s}^{-1}
\]
\[
T_1 = 500\,\text{K}, \quad T_2 = 700\,\text{K}
\]
Step 3: Calculate each term:
\[
\ln\left(\frac{0.07}{0.02}\right) = \ln(3.5) = 1.253
\]
\[
\frac{1}{500} - \frac{1}{700} = \frac{200}{350000} = 0.0005714
\]
Step 4: Substitute values into the equation:
\[
1.253 = \frac{E_a}{8.314} \times 0.0005714
\]
Step 5: Solve for \(E_a\):
\[
E_a = \frac{1.253 \times 8.314}{0.0005714}
\]
\[
E_a \approx 1.82 \times 10^{4}\,\text{J mol}^{-1}
\]
\[
E_a \approx 18.2\,\text{kJ mol}^{-1}
\]