For a first–order reaction, \( \ln\!\left(\dfrac{[A]_0}{[A]_t}\right)=kt \).
Here \( \dfrac{[A]_0}{[A]_t}=16 $\Rightarrow$ \ln 16 = 4\ln 2 = 4\times 0.693 = 2.772 \).
Given \( k=60\ \mathrm{s^{-1}} \).
\[
t=\frac{\ln 16}{k}=\frac{2.772}{60}=4.62\times 10^{-2}\ \mathrm{s}\approx 0.046\ \mathrm{s}.
\]
\[
\boxed{t \approx 4.6\times 10^{-2}\ \text{s}}
\]