X and Y are Bernoulli random variables taking values in \( \{0,1\} \). The joint probability mass function of the random variables is given by:
P(X = 0, Y = 0) = 0.06, P(X = 0, Y = 1) = 0.14, P(X = 1, Y = 0) = 0.24, P(X = 1, Y = 1) = 0.56.
The mutual information \( I(X; Y) \) is (rounded off to two decimal places).
In a high school having equal number of boy students and girl students, 75% of the students study Science and the remaining 25% students study Commerce. Commerce students are two times more likely to be a boy than are Science students. The amount of information gained in knowing that a randomly selected girl student studies Commerce (rounded off to three decimal places) is _________ bits.
In the circuit below, \( M_1 \) is an ideal AC voltmeter and \( M_2 \) is an ideal AC ammeter. The source voltage (in Volts) is \( v_s(t) = 100 \cos(200t) \). What should be the value of the variable capacitor \( C \) such that the RMS readings on \( M_1 \) and \( M_2 \) are 25 V and 5 A, respectively?

In the circuit shown, the identical transistors Q1 and Q2 are biased in the active region with \( \beta = 120 \). The Zener diode is in the breakdown region with \( V_Z = 5 \, V \) and \( I_Z = 25 \, mA \). If \( I_L = 12 \, mA \) and \( V_{EB1} = V_{EB2} = 0.7 \, V \), then the values of \( R_1 \) and \( R_2 \) (in \( k\Omega \), rounded off to one decimal place) are _________, respectively.
