Given two circles:
\[
x^2 + y^2 + 2gx + 2fy + c = 0
\]
and
\[
2x^2 + 2y^2 + 3x + 8y + 2c = 0
\]
Their radical axis touches the circle:
\[
x^2 + y^2 + 2x + 2y + 1 = 0
\]
Find the values of \( g \) and \( f \).
Step 1: The radical axis of the two circles is given by subtracting their equations:
\[
(x^2 + y^2 + 2gx + 2fy + c) - \frac{1}{2}(2x^2 + 2y^2 + 3x + 8y + 2c) = 0
\]
Multiply second equation by \( \frac{1}{2} \) for consistent comparison:
\[
x^2 + y^2 + 2gx + 2fy + c - (x^2 + y^2 + \frac{3}{2} x + 4 y + c) = 0
\]
Simplify:
\[
2gx + 2fy - \frac{3}{2} x - 4 y = 0
\]
\[
(2g - \frac{3}{2}) x + (2f - 4) y = 0
\]
Multiply both sides by 2:
\[
(4g - 3) x + (4f - 8) y = 0
\]
This is the radical axis.
Step 2: The radical axis touches the circle:
\[
x^2 + y^2 + 2x + 2y + 1 = 0
\]
Equation of the line (radical axis) is:
\[
(4g - 3) x + (4f - 8) y = 0
\]
or
\[
A x + B y = 0
\]
where
\[
A = 4g - 3, \quad B = 4f - 8
\]
Step 3: For a line \( A x + B y + C = 0 \) to be tangent to a circle:
\[
\text{Distance from center} = \text{radius}
\]
Circle center and radius:
\[
(x + 1)^2 + (y + 1)^2 = 1
\]
Center \( C = (-1, -1) \), radius \( r = 1 \).
Step 4: Distance from center to line:
\[
d = \frac{|A(-1) + B(-1) + 0|}{\sqrt{A^2 + B^2}} = \frac{| -A - B |}{\sqrt{A^2 + B^2}} = r = 1
\]
Substitute \( A \) and \( B \):
\[
\frac{|-(4g - 3) - (4f - 8)|}{\sqrt{(4g - 3)^2 + (4f - 8)^2}} = 1
\]
Simplify numerator:
\[
| -4g + 3 - 4f + 8 | = | 11 - 4(g + f) |
\]
So:
\[
\frac{|11 - 4(g + f)|}{\sqrt{(4g - 3)^2 + (4f - 8)^2}} = 1
\]
Square both sides:
\[
(11 - 4(g + f))^2 = (4g - 3)^2 + (4f - 8)^2
\]
Step 5: Expand RHS:
\[
(4g - 3)^2 + (4f - 8)^2 = 16 g^2 - 24 g + 9 + 16 f^2 - 64 f + 64 = 16 g^2 + 16 f^2 - 24 g - 64 f + 73
\]
Step 6: Expand LHS:
\[
(11 - 4(g + f))^2 = 121 - 88(g + f) + 16 (g + f)^2 = 121 - 88 g - 88 f + 16(g^2 + 2 g f + f^2)
\]
\[
= 121 - 88 g - 88 f + 16 g^2 + 32 g f + 16 f^2
\]
Step 7: Equate and simplify:
\[
121 - 88 g - 88 f + 16 g^2 + 32 g f + 16 f^2 = 16 g^2 + 16 f^2 - 24 g - 64 f + 73
\]
Subtract RHS from both sides:
\[
121 - 88 g - 88 f + 16 g^2 + 32 g f + 16 f^2 - 16 g^2 - 16 f^2 + 24 g + 64 f - 73 = 0
\]
Simplify:
\[
(121 - 73) + (-88 g + 24 g) + (-88 f + 64 f) + 32 g f = 0
\]
\[
48 - 64 g - 24 f + 32 g f = 0
\]
Step 8: Rearrange:
\[
32 g f - 64 g - 24 f + 48 = 0
\]
Divide entire equation by 8:
\[
4 g f - 8 g - 3 f + 6 = 0
\]
Rearranged:
\[
4 g f - 8 g - 3 f = -6
\]
Step 9: To find specific values, observe that either \( g = \frac{3}{4} \) or \( f = 2 \) satisfies this equation.
Therefore, the solutions are:
\[
\boxed{ g = \frac{3}{4} \quad \text{or} \quad f = 2 }
\]