Step 1: Using De Moivre's Theorem.
De Moivre's theorem states that \( \left( \cos\alpha + i \sin\alpha \right)^n = \cos(n\alpha) + i \sin(n\alpha) \). Thus, the product of all values is \( \cos 5\alpha + i \sin 5\alpha \).
Step 2: Conclusion.
Thus, the correct answer is option (C).
Final Answer:
\[
\boxed{\text{(C) } \cos 5\alpha + i \sin 5\alpha}
\]