Step 1: Define events and given probabilities.
Let \(P\) = gets Plumbing, \(E\) = gets Electric.
\(P(P) = \dfrac{2}{3}\).
Given \(P(\overline{E}) = \dfrac{5}{9} \Rightarrow P(E) = 1 - \dfrac{5}{9} = \dfrac{4}{9}\).
"At least one" means \(P(P \cup E) = \dfrac{4}{5}\).
Step 2: Use the union formula to find the intersection.
\(P(P \cup E) = P(P) + P(E) - P(P \cap E)\).
So \(P(P \cap E) = P(P) + P(E) - P(P \cup E)\).
\(\Rightarrow P(P \cap E) = \dfrac{2}{3} + \dfrac{4}{9} - \dfrac{4}{5}\).
With denominator \(45\): \(\dfrac{2}{3} = \dfrac{30}{45},\ \dfrac{4}{9} = \dfrac{20}{45},\ \dfrac{4}{5} = \dfrac{36}{45}\).
\(\Rightarrow P(P \cap E) = \dfrac{30+20-36}{45} = \dfrac{14}{45}\).
Step 3: Conclude.
Probability of getting both \(= \boxed{\dfrac{14}{45}}\).