Step 1: Define events and given probabilities.
Let \(P\) = gets Plumbing, \(E\) = gets Electric.
\(P(P) = \dfrac{2}{3}\).
Given \(P(\overline{E}) = \dfrac{5}{9} \Rightarrow P(E) = 1 - \dfrac{5}{9} = \dfrac{4}{9}\).
"At least one" means \(P(P \cup E) = \dfrac{4}{5}\).
Step 2: Use the union formula to find the intersection.
\(P(P \cup E) = P(P) + P(E) - P(P \cap E)\).
So \(P(P \cap E) = P(P) + P(E) - P(P \cup E)\).
\(\Rightarrow P(P \cap E) = \dfrac{2}{3} + \dfrac{4}{9} - \dfrac{4}{5}\).
With denominator \(45\): \(\dfrac{2}{3} = \dfrac{30}{45},\ \dfrac{4}{9} = \dfrac{20}{45},\ \dfrac{4}{5} = \dfrac{36}{45}\).
\(\Rightarrow P(P \cap E) = \dfrac{30+20-36}{45} = \dfrac{14}{45}\).
Step 3: Conclude.
Probability of getting both \(= \boxed{\dfrac{14}{45}}\).
If the probability distribution is given by:
| X | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|---|---|---|---|---|---|---|---|---|
| P(x) | 0 | k | 2k | 2k | 3k | k² | 2k² | 7k² + k |
Then find: \( P(3 < x \leq 6) \)
If \(S=\{1,2,....,50\}\), two numbers \(\alpha\) and \(\beta\) are selected at random find the probability that product is divisible by 3 :