(A), (C), (B), (D)
(A), (B), (C), (D)
Finding $n$ such that $P(\text{winning at least once}) > 0.9$. The probability of losing a single game is:
$P(loss) = 1 - \frac{2}{3} = \frac{1}{3}$
The probability of losing all $n$ games is:
$P(losing all n \text{ games}) = \left(\frac{1}{3}\right)^n$
The probability of winning at least once is:
$P(winning at least once) = 1 - P(losing all n games) = 1 - \left(\frac{1}{3}\right)^n$
We require:
$1 - \left(\frac{1}{3}\right)^n > 0.9$
$\left(\frac{1}{3}\right)^n < 0.1$
Taking the natural logarithm on both sides:
$n \ln\left(\frac{1}{3}\right) < \ln(0.1)$
Since $\ln\left(\frac{1}{3}\right) < 0$, dividing by it reverses the inequality:
$n > \frac{\ln(0.1)}{\ln\left(\frac{1}{3}\right)}$
Using approximate values:
$\ln(0.1) \approx -2.3026$, $\ln\left(\frac{1}{3}\right) \approx -1.0986$
$n > \frac{-2.3026}{-1.0986} \approx 2.1$
Thus, the least integer $n$ is:
$n = 3$
Mean, variance, and standard deviation of $X$. The number of wins $X$ follows a Binomial distribution with parameters $n = 3$ and $p = \frac{2}{3}$. The mean, variance, and standard deviation are given by:
- Mean:
Mean $= n \cdot p = 3 \cdot \frac{2}{3} = 2$
- Variance:
Variance $= n \cdot p \cdot (1 - p) = 3 \cdot \frac{2}{3} \cdot \frac{1}{3} = \frac{2}{3} \approx 0.67$
- Standard deviation:
Standard Deviation $= \sqrt{\text{Variance}} = \sqrt{\frac{2}{3}} \approx 0.816$
Matching options. From the above calculations:
$n = 3$ corresponds to (A).
Mean $= 2$ corresponds to (C).
Variance $= \frac{2}{3}$ corresponds to (B).
Standard deviation $= 0.816$ corresponds to (D).
Thus, the correct sequence is:
(A), (C), (B), (D)
List-I | List-II (Adverbs) |
(A) P(exactly 2 heads) | (I) \(\frac{1}{4}\) |
(B) P(at least 1 head) | (II) \(1\) |
(C) P(at most 2 heads) | (III) \(\frac{3}{4}\) |
(D) P(exactly 1 head) | (IV) \(\frac{1}{2}\) |
LIST-I(EVENT) | LIST-II(PROBABILITY) |
(A) The sum of the number is greater than 11 | (i) 0 |
(B) The sum of the number is 4 or less | (ii) 1/15 |
(C) The sum of the number is 4 | (iii) 2/15 |
(D) The sum of the number is 4 | (iv) 3/15 |
Choose the correct answer from the option given below