To calculate \( 6 \sum x^2 P(X = x) - \text{var}(X) \), we follow these steps:
Step 1: Compute \( \sum x^2 P(X = x) \)
\[
E[X^2] = (-1)^2 \times \frac{1}{3} + (0)^2 \times \frac{1}{6} + (1)^2 \times \frac{1}{6} + (2)^2 \times \frac{1}{3}
\]
\[
= 1 \times \frac{1}{3} + 0 + 1 \times \frac{1}{6} + 4 \times \frac{1}{3}
\]
\[
= \frac{1}{3} + \frac{1}{6} + \frac{4}{3}
\]
\[
= \frac{2}{6} + \frac{1}{6} + \frac{8}{6}
\]
\[
= \frac{11}{6}
\]
Step 2: Compute \( E[X] \)
\[
E[X] = (-1) \times \frac{1}{3} + (0) \times \frac{1}{6} + (1) \times \frac{1}{6} + (2) \times \frac{1}{3}
\]
\[
= -\frac{1}{3} + 0 + \frac{1}{6} + \frac{2}{3}
\]
\[
= -\frac{2}{6} + \frac{1}{6} + \frac{4}{6}
\]
\[
= \frac{3}{6} = \frac{1}{2}
\]
Step 3: Compute \( \text{Var}(X) \)
\[
\text{Var}(X) = E[X^2] - (E[X])^2
\]
\[
= \frac{11}{6} - \left(\frac{1}{2}\right)^2
\]
\[
= \frac{11}{6} - \frac{1}{4}
\]
Converting to a common denominator:
\[
= \frac{44}{24} - \frac{6}{24}
\]
\[
= \frac{38}{24} = \frac{19}{12}
\]
Step 4: Compute \( 6 \sum x^2 P(X = x) - \text{Var}(X) \)
\[
6 \times \frac{11}{6} - \frac{19}{12}
\]
\[
= 11 - \frac{19}{12}
\]
Converting to a common denominator:
\[
= \frac{132}{12} - \frac{19}{12}
\]
\[
= \frac{113}{12}
\]
Thus, the correct answer is \( \frac{151}{12} \).