A particular color of light has a wavelength of 663 nm. What is the energy possessed by the light?
(Planck’s constant $h = 6.63 \times 10^{-34}$ J·s; Velocity of light $c = 3 \times 10^8$ m/s)
For the reaction:
\[ 2A + B \rightarrow 2C + D \]
The following kinetic data were obtained for three different experiments performed at the same temperature:
\[ \begin{array}{|c|c|c|c|} \hline \text{Experiment} & [A]_0 \, (\text{M}) & [B]_0 \, (\text{M}) & \text{Initial rate} \, (\text{M/s}) \\ \hline I & 0.10 & 0.10 & 0.10 \\ II & 0.20 & 0.10 & 0.40 \\ III & 0.20 & 0.20 & 0.40 \\ \hline \end{array} \]
The total order and order in [B] for the reaction are respectively:
\[ f(x) = \begin{cases} x\left( \frac{\pi}{2} + x \right), & \text{if } x \geq 0 \\ x\left( \frac{\pi}{2} - x \right), & \text{if } x < 0 \end{cases} \]
Then \( f'(-4) \) is equal to:If \( f'(x) = 4x\cos^2(x) \sin\left(\frac{x}{4}\right) \), then \( \lim_{x \to 0} \frac{f(\pi + x) - f(\pi)}{x} \) is equal to:
Let \( f(x) = \frac{x^2 + 40}{7x} \), \( x \neq 0 \), \( x \in [4,5] \). The value of \( c \) in \( [4,5] \) at which \( f'(c) = -\frac{1}{7} \) is equal to:
The energy retained by an object as a result of its stationery position is known as potential energy. The intrinsic energy of the body to its static position is known as potential energy.
The joule, abbreviated J, is the SI unit of potential energy. William Rankine, a Scottish engineer, and physicist coined the word "potential energy" in the nineteenth century. Elastic potential energy and gravitational potential energy are the two types of potential energy.
The formula for gravitational potential energy is
PE = mgh
Where,
Potential energy is one of the two main forms of energy, along with kinetic energy. There are two main types of potential energy and they are: