To solve the problem, we must analyze the simple harmonic motion (SHM) of the particle given its position, velocity, and acceleration magnitudes. The general equations for SHM are:
Where \( A \) is the amplitude, \( \omega \) is the angular frequency, and \( \phi \) is the phase angle.
Given are:
From \( a = -A\omega^2 \cos(\omega t + \phi) = -\omega^2 x \), we have: \[ 16 = \omega^2 \times 4 \] Solving for \( \omega^2 \): \[ \omega^2 = \frac{16}{4} = 4 \Rightarrow \omega = 2 \] Substituting into the velocity equation \( v = -A\omega \sin(\omega t + \phi) \), we have: \[ 2 = -A \cdot 2 \cdot \sin(\omega t + \phi) \Rightarrow \sin(\omega t + \phi) = -\frac{1}{2} \] We now find \( A^2 \) using the identity for SHM: \[ A^2 = x^2 + \left(\frac{v^2}{\omega^2}\right) \] Substitute known values: \[ A^2 = 4^2 + \left(\frac{2^2}{4}\right) = 16 + 1 = 17 \] Thus, the amplitude squared, \( A^2 = x = 17 \), ensuring it matches the required range. Finally, \( A = \sqrt{17} \, \text{m} \).
The given data is:
x = 4 m, v = 2 m/s, a = 16 m/s2
For a particle in Simple Harmonic Motion (SHM), the equations for position, velocity, and acceleration are:
x = A cos ωt,
v = Aω sin ωt,
a = -Aω2 cos ωt
Step 1: Using the relation between acceleration and position
The acceleration is given by:
a = -ω2x
Substitute a = 16 m/s2 and x = 4 m:
16 = ω2 ⋅ 4 ⟹ ω2 = 4
Thus: ω = 2 rad/s
Step 2: Using the relation between velocity and amplitude
The velocity equation in SHM is:
v2 = ω2 (A2 − x2)
Substitute v = 2 m/s, ω = 2 rad/s, x = 4 m:
22 = 22 (A2 − 42)
4 = 4 (A2 − 16) ⟹ A2 − 16 = 1
A2 = 17
Step 3: Amplitude
The amplitude of the motion is:
A = \(\sqrt{17}\) m
Thus, x = 17.
A particle is subjected to simple harmonic motions as: $ x_1 = \sqrt{7} \sin 5t \, \text{cm} $ $ x_2 = 2 \sqrt{7} \sin \left( 5t + \frac{\pi}{3} \right) \, \text{cm} $ where $ x $ is displacement and $ t $ is time in seconds. The maximum acceleration of the particle is $ x \times 10^{-2} \, \text{m/s}^2 $. The value of $ x $ is:
Two simple pendulums having lengths $l_{1}$ and $l_{2}$ with negligible string mass undergo angular displacements $\theta_{1}$ and $\theta_{2}$, from their mean positions, respectively. If the angular accelerations of both pendulums are same, then which expression is correct?
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 