Step 1: Find the vectors representing the sides of the triangle.
The position vectors are given for the vertices \( A(4, 5, 1) \), \( B(2, 4, -1) \), and \( C(3, 6, -3) \). The vectors representing the sides are:
\[
\overrightarrow{AB} = B - A = (2 - 4, 4 - 5, -1 - 1) = (-2, -1, -2)
\]
\[
\overrightarrow{AC} = C - A = (3 - 4, 6 - 5, -3 - 1) = (-1, 1, -4)
\]
\[
\overrightarrow{BC} = C - B = (3 - 2, 6 - 4, -3 - (-1)) = (1, 2, -2)
\]
Step 2: Check for right angles using the dot product.
To check if the triangle is right-angled, calculate the dot product of two sides. For \( \overrightarrow{AB} \) and \( \overrightarrow{AC} \):
\[
\overrightarrow{AB} \cdot \overrightarrow{AC} = (-2)(-1) + (-1)(1) + (-2)(-4) = 2 - 1 + 8 = 9 \neq 0
\]
For \( \overrightarrow{AB} \) and \( \overrightarrow{BC} \):
\[
\overrightarrow{AB} \cdot \overrightarrow{BC} = (-2)(1) + (-1)(2) + (-2)(-2) = -2 - 2 + 4 = 0
\]
Since the dot product is zero, the angle between \( \overrightarrow{AB} \) and \( \overrightarrow{BC} \) is \( 90^\circ \), so the triangle is right-angled.
Step 3: Conclusion.
The triangle is right-angled but not isosceles. The correct answer is (1) Right-angled but not isosceles.