A beam of unpolarised light of intensity \( I_0 \) is passed through a polaroid A and then through another polaroid B which is oriented so that its principal plane makes an angle of 45° relative to that of A. The intensity of emergent light is:
Two polaroide $A$ and $B$ are placed in such a way that the pass-axis of polaroids are perpendicular to each other Now, another polaroid $C$ is placed between $A$ and $B$ bisecting angle between them If intensity of unpolarized light is $I _0$ then intensity of transmitted light after passing through polaroid $B$ will be:
For the reaction:
\[ 2A + B \rightarrow 2C + D \]
The following kinetic data were obtained for three different experiments performed at the same temperature:
\[ \begin{array}{|c|c|c|c|} \hline \text{Experiment} & [A]_0 \, (\text{M}) & [B]_0 \, (\text{M}) & \text{Initial rate} \, (\text{M/s}) \\ \hline I & 0.10 & 0.10 & 0.10 \\ II & 0.20 & 0.10 & 0.40 \\ III & 0.20 & 0.20 & 0.40 \\ \hline \end{array} \]
The total order and order in [B] for the reaction are respectively:
\[ f(x) = \begin{cases} x\left( \frac{\pi}{2} + x \right), & \text{if } x \geq 0 \\ x\left( \frac{\pi}{2} - x \right), & \text{if } x < 0 \end{cases} \]
Then \( f'(-4) \) is equal to:If \( f'(x) = 4x\cos^2(x) \sin\left(\frac{x}{4}\right) \), then \( \lim_{x \to 0} \frac{f(\pi + x) - f(\pi)}{x} \) is equal to:
Let \( f(x) = \frac{x^2 + 40}{7x} \), \( x \neq 0 \), \( x \in [4,5] \). The value of \( c \) in \( [4,5] \) at which \( f'(c) = -\frac{1}{7} \) is equal to:
Light travels in form of transverse EM waves. The underlying oscillation is along directions perpendicular to the propagation direction, in this example, oscillating electric and magnetic fields. Process of restricting the vibration of light waves to one direction is known as Polarisation.
There are three types of polarisation such as:
The few methods of polarisation of Light are: