Let the hyperbola be $\frac{x^2}{a^2} - \frac{y^2}{4} = 1$.
Let the tangents be drawn at points $P$ and $Q$.
Let the point of intersection of the tangents be $(h, k)$.
The equation of the chord of contact is $\frac{hx}{a^2} - \frac{ky}{4} = 1$.
The equation of the pair of tangents from $(h, k)$ to the hyperbola is
$$SS_1 = T^2$$
where $S = \frac{x^2}{a^2} - \frac{y^2}{4} - 1$, $S_1 = \frac{h^2}{a^2} - \frac{k^2}{4} - 1$, and $T = \frac{hx}{a^2} - \frac{ky}{4} - 1$.
The tangents are perpendicular if the coefficient of $x^2$ + coefficient of $y^2 = 0$.
The equation of the pair of tangents is
$$\left(\frac{x^2}{a^2} - \frac{y^2}{4} - 1\right)\left(\frac{h^2}{a^2} - \frac{k^2}{4} - 1\right) = \left(\frac{hx}{a^2} - \frac{ky}{4} - 1\right)^2$$
Expanding and equating the coefficients of $x^2$ and $y^2$, we get
$$\frac{1}{a^2}\left(\frac{h^2}{a^2} - \frac{k^2}{4} - 1\right) - \frac{1}{4}\left(\frac{h^2}{a^2} - \frac{k^2}{4} - 1\right) = \frac{h^2}{a^4} - \frac{k^2}{16}$$
$$\left(\frac{1}{a^2} - \frac{1}{4}\right)\left(\frac{h^2}{a^2} - \frac{k^2}{4} - 1\right) = \frac{h^2}{a^4} - \frac{k^2}{16}$$
$$\frac{4-a^2}{4a^2}\left(\frac{h^2}{a^2} - \frac{k^2}{4} - 1\right) = \frac{h^2}{a^4} - \frac{k^2}{16}$$
Since the tangents are perpendicular, we use the director circle.
The director circle of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is $x^2 + y^2 = a^2 - b^2$.
In our case, $b^2 = 4$.
The director circle is $x^2 + y^2 = a^2 - 4$.
The point of intersection of the tangents lies on the circle $x^2 + y^2 = 5$.
Comparing the two equations, we have
$$a^2 - 4 = 5$$
$$a^2 = 9$$
$$a = 3$$
Thus, the value of $a$ is 3.
Final Answer: The final answer is $\boxed{(4)}$