Concept:
The temperature dependence of the equilibrium constant is given by the van’t Hoff equation
:
\[
\ln K = -\frac{\Delta H^\circ}{RT} + \frac{\Delta S^\circ}{R}
\]
Step 1: Convert Natural Logarithm to Base-10 Logarithm
Using:
\[
\ln K = 2.303 \log K
\]
\[
\Rightarrow \log K
= -\frac{\Delta H^\circ}{2.303R}\left(\frac{1}{T}\right)
+ \frac{\Delta S^\circ}{2.303R}
\]
Step 2: Compare with Straight Line Equation
General straight line form:
\[
y = mx + c
\]
Here:
\[
y = \log K, \quad x = \frac{1}{T}
\]
Thus,
\[
\text{Slope } (m) = -\frac{\Delta H^\circ}{2.303R}
\]
\[
\text{Intercept } (c) = \frac{\Delta S^\circ}{2.303R}
\]
Final Conclusion:
\[
\boxed{\text{Intercept} = \frac{\Delta S^\circ}{2.303R}, \quad
\text{Slope} = -\frac{\Delta H^\circ}{2.303R}}
\]