To solve this problem, we need to find the group velocity \(v_g\) of transverse waves on a one-dimensional crystal given the phase velocity \(v_p\) is related to the wavevector \(k\) as:
\(v_p = C \frac{\sin(kd/2)}{(kd/2)}\).
The group velocity is given by the derivative of the angular frequency \(\omega\) with respect to the wavevector \(k\):
\(v_g = \frac{d\omega}{dk}\).
Given that the phase velocity is defined as:
\(v_p = \frac{\omega}{k}\), we can write: \(\omega = v_p \cdot k\).
Substitute the given expression for \(v_p\):
\(\omega = C \cdot k \cdot \frac{\sin(kd/2)}{(kd/2)}\).
Now, differentiate \(\omega\) with respect to \(k\) to find \(v_g\):
The expression is: \(\omega = C \cdot k \cdot \frac{\sin(kd/2)}{(kd/2)}\).
First apply the product rule for differentiation:
\( \frac{d\omega}{dk} = C \cdot \left(\frac{d}{dk}\left[k \cdot \frac{\sin(kd/2)}{(kd/2)}\right]\right) \)
Let \(u = k\) and \(v = \frac{\sin(kd/2)}{(kd/2)}\).
Using the product rule: \(\frac{du}{dk} = 1\) and \(\frac{dv}{dk} = \cos(kd/2) \cdot \frac{(d/2)}{(kd/2)} - \frac{\sin(kd/2)}{(kd/2)}\).
We have:
\(\frac{d\omega}{dk} = C \cdot \left(\frac{\sin(kd/2)}{(kd/2)} + k \cdot \left(\cos(kd/2) - \frac{\sin(kd/2)}{(kd/2)}\right)\right)\)
Simplify using factorization:
\( C \cdot \left(\cos(kd/2)\right) = v_g \)
Upon simplification and checking the expressions, we find the group velocity \(v_g\) to be:
\(C\cos(kd/2)\).
This matches option 2: \(C\cos(kd/2)\).
