The perpendicular distance of the plane \( r \cdot (3\hat{i} + 4\hat{j} + 12\hat{k}) = 78 \) from the origin is __________.
Let a line passing through the point $ (4,1,0) $ intersect the line $ L_1: \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} $ at the point $ A(\alpha, \beta, \gamma) $ and the line $ L_2: x - 6 = y = -z + 4 $ at the point $ B(a, b, c) $. Then $ \begin{vmatrix} 1 & 0 & 1 \\ \alpha & \beta & \gamma \\ a & b & c \end{vmatrix} \text{ is equal to} $
Derive an expression for maximum speed of a vehicle moving along a horizontal circular track.
If the mean and variance of a binomial distribution are \( 18 \) and \( 12 \) respectively, then the value of \( n \) is __________.