Step 1: Known Information.
Solution "A":
Concentration of acetic acid: \( x \, M \)
Percentage of ionization: \( 4.242\% \)
Volume: \( 1 \, L \)
Solution "B":
Concentration of acetic acid: \( y \, M \)
Percentage of ionization: \( 3\% \)
Volume: \( 1 \, L \)
Acetic acid dissociation constant (\( K_a \)): \( 1.8 \times 10^{-5} \)
Step 2: Relationship Between Ionization Percentage and Concentration.
For a weak acid like acetic acid, the percentage of ionization (\( \alpha \)) is related to the concentration (\( C \)) and the acid dissociation constant (\( K_a \)) by the formula:
$$
\alpha = \sqrt{\frac{K_a}{C}}
$$
Step 3: Calculate \( x \) (Concentration of Solution "A").
For solution "A":
Percentage of ionization (\( \alpha_A \)) = \( 4.242\% = 0.04242 \)
Using the formula:
$$
\alpha_A = \sqrt{\frac{K_a}{x}}
$$
Substitute \( K_a = 1.8 \times 10^{-5} \):
$$
0.04242 = \sqrt{\frac{1.8 \times 10^{-5}}{x}}
$$
Square both sides:
$$
(0.04242)^2 = \frac{1.8 \times 10^{-5}}{x}
$$
$$
0.001799 = \frac{1.8 \times 10^{-5}}{x}
$$
Solve for \( x \):
$$
x = \frac{1.8 \times 10^{-5}}{0.001799} \approx 0.01 \, M
$$
Step 4: Calculate \( y \) (Concentration of Solution "B").
For solution "B":
Percentage of ionization (\( \alpha_B \)) = \( 3\% = 0.03 \)
Using the formula:
$$
\alpha_B = \sqrt{\frac{K_a}{y}}
$$
Substitute \( K_a = 1.8 \times 10^{-5} \):
$$
0.03 = \sqrt{\frac{1.8 \times 10^{-5}}{y}}
$$
Square both sides:
$$
(0.03)^2 = \frac{1.8 \times 10^{-5}}{y}
$$
$$
0.0009 = \frac{1.8 \times 10^{-5}}{y}
$$
Solve for \( y \):
$$
y = \frac{1.8 \times 10^{-5}}{0.0009} \approx 0.02 \, M
$$
Step 5: Calculate the Resultant Concentration.
When solutions "A" and "B" are mixed:
Volume of each solution: \( 1 \, L \)
Total volume of the mixture: \( 1 \, L + 1 \, L = 2 \, L \)
Total moles of acetic acid in the mixture:
$$
\text{Moles of acetic acid from A} = x \times 1 = 0.01 \, \text{mol}
$$
$$
\text{Moles of acetic acid from B} = y \times 1 = 0.02 \, \text{mol}
$$
$$
\text{Total moles of acetic acid} = 0.01 + 0.02 = 0.03 \, \text{mol}
$$
Concentration of acetic acid in the resultant solution:
$$
\text{Concentration} = \frac{\text{Total moles of acetic acid}}{\text{Total volume}} = \frac{0.03 \, \text{mol}}{2 \, \text{L}} = 0.015 \, M
$$
Final Answer: \( \boxed{0.015 \, M} \)