Question:

The pair(s) of diamagnetic ions is (are):

Show Hint

To determine if an ion is paramagnetic or diamagnetic, calculate its electron configuration and count unpaired electrons. Diamagnetism requires all electrons to be paired.
Updated On: May 19, 2025
  • \( \text{La}^{3+}, \, \text{Ce}^{4+} \)
  • \( \text{Yb}^{2+}, \, \text{Lu}^{3+} \)
  • \( \text{La}^{2+}, \, \text{Ce}^{3+} \)
  • \( \text{Yb}^{3+}, \, \text{Lu}^{2+} \) 

Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A, B

Solution and Explanation

Step 1: Understand magnetic behavior 
- An ion is diamagnetic if it has no unpaired electrons.
- It is paramagnetic if one or more unpaired electrons are present. 
Step 2: Electron configurations and unpaired electrons

  • \( \text{La}^{3+} \): Atomic number 57. Electronic configuration: \([ \text{Xe} ]\, 4f^0 \, 5d^0 \, 6s^0\) → 0 unpaired electrons → Diamagnetic.
  • \( \text{Ce}^{4+} \): Atomic number 58. Configuration: \([ \text{Xe} ]\, 4f^0 \, 5d^0 \, 6s^0\) → 0 unpaired electrons → Diamagnetic.
  • \( \text{Yb}^{2+} \): Atomic number 70. Configuration: \([ \text{Xe} ]\, 4f^{14} \, 5d^0 \, 6s^0\) → 0 unpaired electrons → Diamagnetic.
  • \( \text{Lu}^{3+} \): Atomic number 71. Configuration: \([ \text{Xe} ]\, 4f^{14} \, 5d^0 \, 6s^0\) → 0 unpaired electrons → Diamagnetic.
  • \( \text{La}^{2+} \): Has configuration \([ \text{Xe} ]\, 4f^0 \, 5d^1 \, 6s^0\) → 1 unpaired electron → Paramagnetic.
  • \( \text{Ce}^{3+} \): Configuration: \([ \text{Xe} ]\, 4f^1 \, 5d^0 \, 6s^0\) → 1 unpaired electron → Paramagnetic.
  • \( \text{Yb}^{3+} \): Configuration: \([ \text{Xe} ]\, 4f^{13} \, 5d^0 \, 6s^0\) → 1 unpaired electron → Paramagnetic.
  • \( \text{Lu}^{2+} \): Configuration: \([ \text{Xe} ]\, 4f^{14} \, 5d^1 \, 6s^0\) → 1 unpaired electron → Paramagnetic.

Conclusion:

  • (A) \( \text{La}^{3+} \), \( \text{Ce}^{4+} \): Both diamagnetic → Correct.
  • (B) \( \text{Yb}^{2+} \), \( \text{Lu}^{3+} \): Both diamagnetic → Correct.
  • (C), (D): Include paramagnetic ions → Incorrect.

Final Answer: \( \boxed{\text{A, B}} \)

Was this answer helpful?
0
0

Questions Asked in JEE Advanced exam

View More Questions