The circuit diagram consists of logic gates. By analyzing each gate’s behavior step-by-step and evaluating the output \( Y \) for each input combination of \( A \) and \( B \), we can determine the output for each case. After constructing the truth table for the circuit, we find that the correct output matches option (3).
Thus, the answer is:
\[ \begin{array}{|c|c|c|} \hline A & B & Y \\ \hline 0 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \\ \hline \end{array} \]
Consider the following logic circuit.
The output is Y = 0 when :
The logic gate equivalent to the combination of logic gates shown in the figure is
The output (Y) of the given logic implementation is similar to the output of an/a …………. gate.
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: