The root locus of a system is a plot of the poles of the closed-loop transfer function as the system gain \( K \) varies from 0 to \( \infty \). The root locus is drawn along the real axis between poles and zeros, and the general rules for identifying points on the root locus are as follows:
- The root locus exists on the real axis between two poles or two zeros.
- The root locus starts at the poles of the open-loop transfer function and ends at the zeros.
Given the transfer function: \[ G(s) = \frac{K s (s + 2)}{(s + 5)(s + 7)} \] - The poles are at \( s = -5 \) and \( s = -7 \), and the zeros are at \( s = 0 \) and \( s = -2 \).
- The root locus exists along the real axis between the poles at \( s = -5 \) and \( s = -7 \), as this region is between two poles.
Thus, the real-axis point \( s = -5 \) is on the root locus.
The op-amps in the following circuit are ideal. The voltage gain of the circuit is ……….. . (Round off to the nearest integer)
An ideal low pass filter has frequency response given by \[ H(j\omega) = \begin{cases} 1, & |\omega| \leq 200\pi \\ 0, & \text{otherwise} \end{cases} \] Let \( h(t) \) be its time domain representation. Then h(0) = _________ (round off to the nearest integer).
A controller \( D(s) \) of the form \( (1 + K_D s) \) is to be designed for the plant \[ G(s) = \frac{1000\sqrt{2}}{s(s+10)^2} \] as shown in the figure. The value of \( K_D \) that yields a phase margin of \(45^\circ\) at the gain cross-over frequency of 10 rad/sec is __________ (round off to one decimal place).
Two units, rated at 100 MW and 150 MW, are enabled for economic load dispatch. When the overall incremental cost is 10,000 Rs./MWh, the units are dispatched to 50 MW and 80 MW respectively. At an overall incremental cost of 10,600 Rs./MWh, the power output of the units are 80 MW and 92 MW, respectively. The total plant MW-output (without overloading any unit) at an overall incremental cost of 11,800 Rs./MWh is ___________ (round off to the nearest integer).
Using shunt capacitors, the power factor of a 3-phase, 4 kV induction motor (drawing 390 kVA at 0.77 pf lag) is to be corrected to 0.85 pf lag. The line current of the capacitor bank, in A, is __________ (round off to one decimal place).
Consider the state-space model
\[ \dot{\mathbf{x}}(t) = A \mathbf{x}(t) + B r(t), \quad y(t) = C \mathbf{x}(t) \]
where \( \mathbf{x}(t) \), \( r(t) \), and \( y(t) \) are the state, input, and output, respectively. The matrices \( A \), \( B \), and \( C \) are given below:
\[ A = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}, \quad B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 0 \end{bmatrix} \]
The sum of the magnitudes of the poles is __________ (round off to the nearest integer).