The root locus of a system is a plot of the poles of the closed-loop transfer function as the system gain \( K \) varies from 0 to \( \infty \). The root locus is drawn along the real axis between poles and zeros, and the general rules for identifying points on the root locus are as follows:
- The root locus exists on the real axis between two poles or two zeros.
- The root locus starts at the poles of the open-loop transfer function and ends at the zeros.
Given the transfer function: \[ G(s) = \frac{K s (s + 2)}{(s + 5)(s + 7)} \] - The poles are at \( s = -5 \) and \( s = -7 \), and the zeros are at \( s = 0 \) and \( s = -2 \).
- The root locus exists along the real axis between the poles at \( s = -5 \) and \( s = -7 \), as this region is between two poles.
Thus, the real-axis point \( s = -5 \) is on the root locus.
The op-amps in the following circuit are ideal. The voltage gain of the circuit is ……….. . (Round off to the nearest integer)
In the given figure, EF and HJ are coded as 30 and 80, respectively. Which one among the given options is most appropriate for the entries marked (i) and (ii)?
An ideal low pass filter has frequency response given by \[ H(j\omega) = \begin{cases} 1, & |\omega| \leq 200\pi \\ 0, & \text{otherwise} \end{cases} \] Let \( h(t) \) be its time domain representation. Then h(0) = _________ (round off to the nearest integer).
A controller \( D(s) \) of the form \( (1 + K_D s) \) is to be designed for the plant \[ G(s) = \frac{1000\sqrt{2}}{s(s+10)^2} \] as shown in the figure. The value of \( K_D \) that yields a phase margin of \(45^\circ\) at the gain cross-over frequency of 10 rad/sec is __________ (round off to one decimal place).