Given expression:
\[ (x^1 + x^2 + \dots + x^6)^4 \]
Rewriting using binomial expansion:
\[ x^4 \left( \frac{1 - x^6}{1 - x} \right)^4 \]
Expanding:
\[ x^4 (1 - x^6)^4 (1 - x)^{-4} \]
Further expanding using binomial theorem:
\[ x^4 [1 - 4x^6 + 6x^{12} \dots ] \cdot (1 - x)^{-4} \]
Applying binomial expansion to each term:
\[ (x^4 - 4x^{10} + 6x^{16} \dots ) \cdot (1 + \binom{15}{12}x^{12} + \binom{9}{6}x^6 \dots) \]
Simplifying:
\[ (x^4 - 4x^{10} + 6x^{16}) \cdot \left(1 + \binom{15}{12}x^{12} + \binom{9}{6}x^6 \dots \right) \]
Computing coefficients:
\[ \binom{15}{3} - 4 \cdot \binom{9}{6} + 6 \]
Calculating values:
\[ = 35 \times 13 - 6 \times 8 \times 7 + 6 \]
Simplifying further:
\[ = 455 - 336 + 6 \]
Final result: \[ = 125 \]
The number of strictly increasing functions \(f\) from the set \(\{1, 2, 3, 4, 5, 6\}\) to the set \(\{1, 2, 3, ...., 9\}\) such that \(f(i)>i\) for \(1 \le i \le 6\), is equal to:
Consider the following two reactions A and B: 
The numerical value of [molar mass of $x$ + molar mass of $y$] is ___.
Consider an A.P. $a_1,a_2,\ldots,a_n$; $a_1>0$. If $a_2-a_1=-\dfrac{3}{4}$, $a_n=\dfrac{1}{4}a_1$, and \[ \sum_{i=1}^{n} a_i=\frac{525}{2}, \] then $\sum_{i=1}^{17} a_i$ is equal to