Given expression:
\[ (x^1 + x^2 + \dots + x^6)^4 \]
Rewriting using binomial expansion:
\[ x^4 \left( \frac{1 - x^6}{1 - x} \right)^4 \]
Expanding:
\[ x^4 (1 - x^6)^4 (1 - x)^{-4} \]
Further expanding using binomial theorem:
\[ x^4 [1 - 4x^6 + 6x^{12} \dots ] \cdot (1 - x)^{-4} \]
Applying binomial expansion to each term:
\[ (x^4 - 4x^{10} + 6x^{16} \dots ) \cdot (1 + \binom{15}{12}x^{12} + \binom{9}{6}x^6 \dots) \]
Simplifying:
\[ (x^4 - 4x^{10} + 6x^{16}) \cdot \left(1 + \binom{15}{12}x^{12} + \binom{9}{6}x^6 \dots \right) \]
Computing coefficients:
\[ \binom{15}{3} - 4 \cdot \binom{9}{6} + 6 \]
Calculating values:
\[ = 35 \times 13 - 6 \times 8 \times 7 + 6 \]
Simplifying further:
\[ = 455 - 336 + 6 \]
Final result: \[ = 125 \]
How many possible words can be created from the letters R, A, N, D (with repetition)?
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to: