Step 1: The given equation is a product of two factors. For the equation to hold, either one or both factors must be zero.
Step 2: Solve each factor separately: 1. \( \frac{9}{x} - \frac{9}{\sqrt{x}} + 2 = 0 \) 2. \( \frac{2}{x} - \frac{7}{\sqrt{x}} + 3 = 0 \)
Step 3: Solve each of the resulting equations for \( x \), and ensure that the solutions satisfy the conditions of the problem.
Step 4: After solving both equations, you will find that there are 2 distinct solutions for \( x \). Thus, the correct answer is (3).
How many possible words can be created from the letters R, A, N, D (with repetition)?
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to: