Question:

The number of real solution of equation x$|$x+4$|$+3$|$x+2$|$+10=0 is/are :

Show Hint

When solving equations with multiple absolute value terms, always identify the critical points (where the arguments become zero) and analyze the equation in the intervals defined by these points.
Updated On: Jan 22, 2026
  • 1
  • 2
  • 3
  • 4
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Step 1: Understanding the Question: 
We need to find the number of real solutions for the equation involving absolute value functions: \(x|x+4|+3|x+2|+10=0\). To solve this, we must analyze the equation in different intervals based on the points where the expressions inside the absolute value signs become zero. 

Step 2: Identifying Critical Points and Intervals: 
The critical points are where the arguments of the absolute value functions are zero.
These are \(x+4=0 \Rightarrow x=-4\) and \(x+2=0 \Rightarrow x=-2\).
These points divide the number line into three intervals: 
Case 1: \(x<-4\) 
Case 2: \(-4 \leq x<-2\) 
Case 3: \(x \geq -2\) 
Step 3: Solving the Equation in Each Interval: 
Case 1: \(x<-4\) 
In this interval, \(x+4<0\) and \(x+2<0\). 
So, \(|x+4| = -(x+4)\) and \(|x+2| = -(x+2)\). 
The equation becomes: \[ x(-(x+4)) + 3(-(x+2)) + 10 = 0 \] \[ -x^2 - 4x - 3x - 6 + 10 = 0 \] \[ -x^2 - 7x + 4 = 0 \] \[ x^2 + 7x - 4 = 0 \] Using the quadratic formula, \(x = \frac{-b \pm \sqrt{b^2-4ac}}{2a}\): \[ x = \frac{-7 \pm \sqrt{7^2 - 4(1)(-4)}}{2(1)} = \frac{-7 \pm \sqrt{49 + 16}}{2} = \frac{-7 \pm \sqrt{65}}{2} \] The two possible values for x are \(x_1 = \frac{-7 + \sqrt{65}}{2}\) and \(x_2 = \frac{-7 - \sqrt{65}}{2}\). 
Since \(\sqrt{64}=8\), \(\sqrt{65} \approx 8.06\). 
\(x_1 \approx \frac{-7 + 8.06}{2} = \frac{1.06}{2} = 0.53\). This is not in the interval \(x<-4\). 
\(x_2 \approx \frac{-7 - 8.06}{2} = \frac{-15.06}{2} = -7.53\). This is in the interval \(x<-4\). 
So, we have one solution from this case: \(x = \frac{-7 - \sqrt{65}}{2}\). 
Case 2: \(-4 \leq x<-2\) 
In this interval, \(x+4 \geq 0\) and \(x+2<0\). 
So, \(|x+4| = x+4\) and \(|x+2| = -(x+2)\). 
The equation becomes: \[ x(x+4) + 3(-(x+2)) + 10 = 0 \] \[ x^2 + 4x - 3x - 6 + 10 = 0 \] \[ x^2 + x + 4 = 0 \] The discriminant is \(D = b^2 - 4ac = 1^2 - 4(1)(4) = 1 - 16 = -15\). 
Since \(D<0\), there are no real solutions in this interval. 
Case 3: \(x \geq -2\) 
In this interval, \(x+4>0\) and \(x+2 \geq 0\). 
So, \(|x+4| = x+4\) and \(|x+2| = x+2\). 
The equation becomes: \[ x(x+4) + 3(x+2) + 10 = 0 \] \[ x^2 + 4x + 3x + 6 + 10 = 0 \] \[ x^2 + 7x + 16 = 0 \] The discriminant is \(D = b^2 - 4ac = 7^2 - 4(1)(16) = 49 - 64 = -15\). 
Since \(D<0\), there are no real solutions in this interval. 

Step 4: Final Answer: 
Combining the results from all three cases, we find only one real solution, \(x = \frac{-7 - \sqrt{65}}{2}\). 
Therefore, the number of real solutions is 1. 
 

Was this answer helpful?
0
0