Consider the quadratic equation
\[
x^2 - 5x + k = 0.
\]
For a quadratic equation \(ax^2 + bx + c = 0\), the discriminant is
\[
D = b^2 - 4ac.
\]
Here, \(a = 1\), \(b = -5\), \(c = k\), so
\[
D = 25 - 4k.
\]
Roots are
\[
x = \frac{5 \pm \sqrt{25 - 4k}}{2}.
\]
For the roots to be integers:
1. The discriminant \(25 - 4k\) must be a non-negative perfect square.
2. The numerator \(5 \pm \sqrt{25 - 4k}\) must be even (so that division by 2 gives an integer).
Step 1: Range of $k$ from non-negative discriminant.
We need
\[
25 - 4k \ge 0
\Rightarrow 4k \le 25
\Rightarrow k \le 6.25.
\]
Since \(k\) is a non-negative integer,
\[
k \in \{0,1,2,3,4,5,6\}.
\]
Step 2: Check for perfect square discriminants.
Compute \(D = 25 - 4k\) for each possible \(k\):
\[
\begin{aligned}
k = 0 &: D = 25 \quad (=5^2)
k = 1 &: D = 21 \quad (\text{not a perfect square})
k = 2 &: D = 17 \quad (\text{not a perfect square})
k = 3 &: D = 13 \quad (\text{not a perfect square})
k = 4 &: D = 9 \quad (=3^2)
k = 5 &: D = 5 \quad (\text{not a perfect square})
k = 6 &: D = 1 \quad (=1^2)
\end{aligned}
\]
Thus, \(D\) is a perfect square for
\[
k = 0,\ 4,\ 6.
\]
Step 3: Verify roots are integers in these cases.
- For \(k = 0\):
\[
x^2 - 5x = 0 \Rightarrow x(x - 5) = 0 \Rightarrow x = 0, 5\quad (\text{integers}).
\]
- For \(k = 4\):
\[
x^2 - 5x + 4 = 0
\Rightarrow x = \frac{5 \pm \sqrt{9}}{2} = \frac{5 \pm 3}{2}
\Rightarrow x = 4, 1\quad (\text{integers}).
\]
- For \(k = 6\):
\[
x^2 - 5x + 6 = 0
\Rightarrow x = \frac{5 \pm \sqrt{1}}{2} = \frac{5 \pm 1}{2}
\Rightarrow x = 3, 2\quad (\text{integers}).
\]
All three values of \(k\) give integer roots.
Therefore, the number of non-negative integer values of \(k\) for which the quadratic has only integer roots is
\[
\boxed{3}.
\]