From kinetic theory of gases, the pressure of an ideal gas is related to
the total kinetic energy $U$ by:
\[
P = \frac{2}{3}\,\frac{U}{V}
\]
The total kinetic energy is:
\[
U = N \times \overline{K}
\]
where $\overline{K}$ is the mean kinetic energy per molecule.
Substituting,
\[
P = \frac{2}{3}\,\frac{N\overline{K}}{V}
\]
Solving for $N$,
\[
N = \frac{3PV}{2\overline{K}}
\]
Substitute given values (SI units):
\[
P = 2~\text{atm} = 2\times10^5~\text{Pa}
\]
\[
V = 1~\text{L} = 10^{-3}~\text{m}^3
\]
\[
\overline{K} = 2\times10^{-9}~\text{J}
\]
\[
N = \frac{3(2\times10^5)(10^{-3})}{2(2\times10^{-9})}
\]
\[
N = \frac{6\times10^2}{4\times10^{-9}}
= 1.5\times10^{11}
\]
\[
\boxed{N = 1.5\times10^{11}}
\]