Concept:
The root mean square (RMS) speed of a gas is given by:
\[
v_{\text{rms}}=\sqrt{\frac{3RT}{M}}
\]
where \(T\) is the absolute temperature and \(M\) is the molar mass of the gas.
If two gases have the same RMS speed, then:
\[
\frac{T_1}{M_1}=\frac{T_2}{M_2}
\]
Step 1: Write the equality for RMS speeds
For hydrogen and oxygen:
\[
\frac{T_{\mathrm{H_2}}}{M_{\mathrm{H_2}}}
=
\frac{T_{\mathrm{O_2}}}{M_{\mathrm{O_2}}}
\]
Step 2: Substitute molar masses
\[
M_{\mathrm{H_2}} = 2,\qquad M_{\mathrm{O_2}} = 32
\]
\[
T_{\mathrm{H_2}} = T_{\mathrm{O_2}} \times \frac{2}{32}
\]
Step 3: Convert temperature of \( \mathrm{O_2} \) to Kelvin
\[
T_{\mathrm{O_2}} = 23^\circ\mathrm{C} = 23 + 273 = 296\ \mathrm{K}
\]
Step 4: Calculate temperature of \( \mathrm{H_2} \)
\[
T_{\mathrm{H_2}} = 296 \times \frac{2}{32}
= \frac{296}{16}
= 18.5\ \mathrm{K}
\]
Final Answer:
\[
\boxed{18.5\ \mathrm{K}}
\]