Step 1: Analyze the graph and find the minimum weight. The graph has 7 edges with weights: \(2, 2, 2, 3, 3, 3, 1\). To construct a minimum spanning tree (MST), the sum of edge weights must be minimized.
Step 2: Apply Kruskal's algorithm. Using Kruskal's algorithm: Select the edge with weight \(1\) (unique choice). Choose three edges of weight \(2\). These edges form a cycle, allowing multiple choices. Choose one edge of weight \(3\) to complete the MST.
Step 3: Count the distinct combinations. There are \(\binom{3}{2} = 3\) ways to choose two edges of weight \(2\). For each choice, there are \(3\) ways to select one edge of weight \(3\). The total number of distinct MSTs is: \[ 3 \times 3 = 9. \]
Final Answer: \[ \boxed{9} \]
Given the following syntax directed translation rules:
Rule 1: \( R \to AB \) { \( B.i = R.i - 1 \); \( A.i = B.i \); \( R.i = A.i + 1 \); }
Rule 2: \( P \to CD \) { \( P.i = C.i + D.i \); \( D.i = C.i + 2 \); }
Rule 3: \( Q \to EF \) { \( Q.i = E.i + F.i \); }
Which ONE is the CORRECT option among the following?
In the diagram, the lines QR and ST are parallel to each other. The shortest distance between these two lines is half the shortest distance between the point P and the line QR. What is the ratio of the area of the triangle PST to the area of the trapezium SQRT?
Note: The figure shown is representative
An electricity utility company charges ₹7 per kWh. If a 40-watt desk light is left on for 10 hours each night for 180 days, what would be the cost of energy consumption? If the desk light is on for 2 more hours each night for the 180 days, what would be the percentage-increase in the cost of energy consumption?