To break down the expression \(x[i] = (p + r) * -s[i] + u / w\) into intermediate triples:
1. Triple (0): \(+\) operation for \(p\) and \(r\). Already given as:
\[
(0): + \, p \, r.
\]
2. Triple (1): Assignment of \(-s[i]\). Using the unary minus (\texttt{uminus}) operator:
\[
(1): =[] \, s[i].
\]
3. Triple (2): Unary minus applied to \((1)\). Already given as:
\[
(2): \texttt{uminus} \, (1).
\]
4. Triple (3): Multiplication of \((0)\) and \((2)\):
\[
(3): * \, (0) \, (2).
\]
5. Triple (4): Division of \(u\) and \(w\). Already given as:
\[
(4): / \, u \, w.
\]
6. Triple (5): Addition of \((3)\) and \((4)\):
\[
(5): + \, (3) \, (4).
\]
7. Triple (6): Assignment of \((5)\) to \(x[i]\):
\[
(6): =[] \, x[i].
\]
The correct missing entries are:
\[
(1): =[] \, s[i], \, (3): * \, (0) \, (2), \, (6): =[] \, x[i].
\]
Final Answer:
\[
\boxed{\text{(A)}}
\]