Given the following syntax directed translation rules:
Rule 1: \( R \to AB \) { \( B.i = R.i - 1 \); \( A.i = B.i \); \( R.i = A.i + 1 \); }
Rule 2: \( P \to CD \) { \( P.i = C.i + D.i \); \( D.i = C.i + 2 \); }
Rule 3: \( Q \to EF \) { \( Q.i = E.i + F.i \); }
Which ONE is the CORRECT option among the following?
Which of the following is the greatest? \[ 0.6, \ 0.666, \ \frac{5}{6}, \ \frac{2}{3} \]
In the diagram, the lines QR and ST are parallel to each other. The shortest distance between these two lines is half the shortest distance between the point P and the line QR. What is the ratio of the area of the triangle PST to the area of the trapezium SQRT?
Note: The figure shown is representative

Consider the relationships among P, Q, R, S, and T:
• P is the brother of Q.
• S is the daughter of Q.
• T is the sister of S.
• R is the mother of Q.
The following statements are made based on the relationships given above.
(1) R is the grandmother of S.
(2) P is the uncle of S and T.
(3) R has only one son.
(4) Q has only one daughter.
Which one of the following options is correct?
A quadratic polynomial \( (x - \alpha)(x - \beta) \) over complex numbers is said to be square invariant if \[ (x - \alpha)(x - \beta) = (x - \alpha^2)(x - \beta^2). \] Suppose from the set of all square invariant quadratic polynomials we choose one at random. The probability that the roots of the chosen polynomial are equal is ___________. (rounded off to one decimal place)