Step 1: Analyze the given DFA diagram.
The given DFA represents the items in the closure of \(I_0\) and the GOTO function for the symbol \(S\).
Step 2: Identify the items in the closure of \(I_0\).
The closure of \(I_0\) contains the following items: \(S \to \cdot S\) \(S \to \cdot SS\) \(S \to \cdot Aa\) \(S \to \cdot bAc\) \(S \to \cdot Bc\) \(S \to \cdot bAb\) \(A \to \cdot d\#\) \(B \to \cdot @\)
Step 3: Apply the GOTO function on the symbol \(S\).
When the GOTO function is applied to \(S\), the following transitions occur: \(S \to S\cdot\) \(S \to S\cdot S\) \(S \to SS\cdot\) \(S \to Aa\cdot\) \(S \to bAc\cdot\) \(S \to Bc\cdot\) \(S \to bAb\cdot\) \(A \to d\#\cdot\) \(B \to @\cdot\)
Step 4: Count the total number of items.
From the diagram, the GOTO function \(GOTO(\text{closure}(I_0), S)\) results in 9 items: \[ S \to S\cdot, \, S \to S\cdot S, \, S \to SS\cdot, \, S \to Aa\cdot, \, S \to bAc\cdot, \, S \to Bc\cdot, \, S \to bAb\cdot, \, A \to d\#\cdot, \, B \to @\cdot. \]
Final Answer: From the above DFA, we can conclude that: \[ \boxed{\text{GOTO}(\text{closure}(I_0), S) \text{ contains 9 items.}} \]