To determine the number of corner points of the feasible region, let us analyze the constraints: 1. \(x \geq 0\):
This represents the region to the right of the \(y\)-axis, including the \(y\)-axis itself. 2. \(y \geq 0\):
This represents the region above the \(x\)-axis, including the \(x\)-axis itself. 3. \(x + y \geq 4\):
This represents the region above the line \(x + y = 4\).
Rearranging, \(y = 4 - x\), which has intercepts at \(x = 4\) and \(y = 4\).
The feasible region is the intersection of these constraints, which lies in the first quadrant (\(x \geq 0\), \(y \geq 0\)) and above the line \(x + y = 4\). The feasible region is unbounded but has two corner points:
Intersection of \(x + y = 4\) with \(x = 0\): \((0, 4)\), - Intersection of \(x + y = 4\) with \(y = 0\): \((4, 0)\). Hence, the number of corner points is \(2\), and the correct answer is (C).
The correct IUPAC name of \([ \text{Pt}(\text{NH}_3)_2\text{Cl}_2 ]^{2+} \) is: