The number density of free electrons in a copper conductor estimated in Example 3.1 is \(8.5 × 10^{28} m^{−3}\). How long does an electron take to drift from one end of a wire 3.0 m long to its other end? The area of cross-section of the wire is \(2.0 × 10^{−6} m^2\) and it is carrying a current of 3.0 A.
Number density of free electrons in a copper conductor, \(n = 8.5 × 10^{28} m^{−3}\) Length of the copper wire, \(l = 3.0 m\)
Area of cross-section of the wire,\( A = 2.0 × 10^{−6} m^2\)
Current carried by the wire,\( I = 3.0 A\), which is given by the relation,
\(I = nAeV_d\)
Where,
e = Electric charge = \(1.6 × 10^{−19} C\)
\(V_d = Drift\space velocity =\frac{ Length \space of \space the \space wire (I)}{Time \space taken\space to\space cover l (t)}\)
\(I = nAe\frac{l}{t}\)
\(t = \frac{nAel}{I}\)
\(t = \frac{3 \times 8.5 \times 10^{28} \times 2 \times10^{-6} \times 1.6 \times 10^{-19}}{3.0}\)
\(t = 2.7 \times 10^{4} s\)
Therefore, the time taken by an electron to drift from one end of the wire to the other is \(2.7 \times 10^{4} s.\)
A ladder of fixed length \( h \) is to be placed along the wall such that it is free to move along the height of the wall.
Based upon the above information, answer the following questions:
(i)} Express the distance \( y \) between the wall and foot of the ladder in terms of \( h \) and height \( x \) on the wall at a certain instant. Also, write an expression in terms of \( h \) and \( x \) for the area \( A \) of the right triangle, as seen from the side by an observer.
निम्नलिखित गद्यांश की सप्रसंग व्याख्या कीजिए :
‘‘पुर्ज़े खोलकर फिर ठीक करना उतना कठिन काम नहीं है, लोग सीखते भी हैं, सिखाते भी हैं, अनाड़ी के हाथ में चाहे घड़ी मत दो पर जो घड़ीसाज़ी का इम्तहान पास कर आया है उसे तो देखने दो । साथ ही यह भी समझा दो कि आपको स्वयं घड़ी देखना, साफ़ करना और सुधारना आता है कि नहीं । हमें तो धोखा होता है कि परदादा की घड़ी जेब में डाले फिरते हो, वह बंद हो गई है, तुम्हें न चाबी देना आता है न पुर्ज़े सुधारना तो भी दूसरों को हाथ नहीं लगाने देते इत्यादि ।’’