Therefore, the correct option is A: \(\frac{ nh }{2 \pi r }\)
Given below are two statements. One is labelled as Assertion (A) and the other is labelled as Reason (R).
Assertion (A): Knowing the initial position \( x_0 \) and initial momentum \( p_0 \) is enough to determine the position and momentum at any time \( t \) for a simple harmonic motion with a given angular frequency \( \omega \).
Reason (R): The amplitude and phase can be expressed in terms of \( x_0 \) and \( p_0 \).
In the light of the above statements, choose the correct answer from the options given below:
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 
It can be defined as "mass in motion." All objects have mass; so if an object is moving, then it is called as momentum.
the momentum of an object is the product of mass of the object and the velocity of the object.
Momentum = mass • velocity
The above equation can be rewritten as
p = m • v
where m is the mass and v is the velocity.
Momentum is a vector quantity and the direction of the of the vector is the same as the direction that an object.