Step 1: The limiting molar conductivity of CaCl$_2$ is the sum of the molar ionic conductivities of its ions:
\[
\lambda_{\text{m}}(\text{CaCl}_2) = \lambda_{\text{m}}(\text{Ca}^{2+}) + \lambda_{\text{m}}(\text{Cl}^{-})
\]
Given:
\[
\lambda_{\text{m}}(\text{Ca}^{2+}) = 119.0 \, \text{S cm}^{-1} \text{mol}^{-1}, \quad \lambda_{\text{m}}(\text{Cl}^{-}) = 76.3 \, \text{S cm}^{-1} \text{mol}^{-1}
\]
\[
\lambda_{\text{m}}(\text{CaCl}_2) = 119.0 + 2 \times 76.3 = 271.6 \, \text{S cm}^{-1} \text{mol}^{-1}
\]
Step 2: Thus, the correct limiting molar conductivity value for CaCl$_2$ is 271.6 S cm$^{-1}$ mol$^{-1}$.