Question:

The molar conductivity of $0.007 \,M$ acetic acid is $20\, S\, cm ^{2} mol ^{-1}$. What is the dissociation constant of acetic acid? Choose the correct option. $\left[\Lambda_{ H ^{+}}^{\circ}=350 \,S \,cm ^{2} mol ^{-1}, \Lambda_{ CH _{3} COO ^{-}}^{\circ}=50\, S\, cm ^{2} mol ^{-1}\right]$

Updated On: Nov 13, 2025
  • $1.75 \times 10^{-4}\, mol\, L ^{-1}$
  • $2.50 \times 10^{-4}\, mol\, L ^{-1}$
  • $1.75 \times 10^{-5}\, mol\, L ^{-1}$
  • $2.50 \times 10^{-5} \, mol\, L ^{-1}$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

To find the dissociation constant (\(K_a\)) of acetic acid, we need to use the relationship between molar conductivity and dissociation. Here is the step-by-step solution to find the dissociation constant: 

Determine the limiting molar conductivity (\(\Lambda^\circ_m\)) of acetic acid:

The limiting molar conductivity of an electrolyte is the sum of the limiting molar conductivities of its constituent ions. For acetic acid, \(CH_3COOH\), it dissociates into \(H^+\) and \(CH_3COO^-\).

\[\Lambda^\circ_m = \Lambda_{H^+}^\circ + \Lambda_{CH_3COO^-}^\circ\]

Given, \(\Lambda_{H^+}^\circ = 350 \, S \, cm^2 \, mol^{-1}\) and \(\Lambda_{CH_3COO^-}^\circ = 50 \, S \, cm^2 \, mol^{-1}\).

\[\Lambda^\circ_m = 350 + 50 = 400 \, S \, cm^2 \, mol^{-1}\]

Calculate the degree of dissociation (\(\alpha\)) using the formula:

\[\alpha = \frac{\Lambda_m}{\Lambda^\circ_m} = \frac{20}{400} = 0.05\]

Use the degree of dissociation to find the dissociation constant \(K_a\):

\[K_a = c \alpha^2 = 0.007 \times (0.05)^2\]
  1.  
\[K_a = 0.007 \times 0.0025 = 0.0000175 = 1.75 \times 10^{-5} \, mol \, L^{-1}\]

Therefore, the dissociation constant of acetic acid is \(1.75 \times 10^{-5} \, mol \, L^{-1}\). The correct option is:

\(1.75 \times 10^{-5} \, mol \, L^{-1}\)

Was this answer helpful?
0
0

Concepts Used:

Conductance

What is conductance?

Conductance is an expression of the ease with which electric current flows through materials like metals and nonmetals. In equations, an uppercase letter G symbolizes conductance. The standard unit of conductance is siemens (S), formerly known as mho.

What is conductance in electricity?

Conductance in electricity is considered the opposite of resistance (R). Resistance is essentially the amount of friction a component presents to the flow of current.

The conductivity of electrolytic solutions is governed by the following factors:

  • Interionic attraction
  • Solvation of ions
  • The viscosity of the solvent
  • Temperature