We minimize \( x^2 + y^2 + z^2 \) subject to the constraint \( x + y + z = 3a \) using the method of Lagrange multipliers.
Let:
\[
f(x, y, z) = x^2 + y^2 + z^2,\quad g(x, y, z) = x + y + z - 3a
\]
Using the method:
\[
\nabla f = \lambda \nabla g \Rightarrow 2x = \lambda,\ 2y = \lambda,\ 2z = \lambda
\Rightarrow x = y = z
\]
Substitute in the constraint:
\[
x + y + z = 3x = 3a \Rightarrow x = a
\Rightarrow f = 3a^2
\]