Question:

The minimum value of the function \( x^2 + y^2 + z^2 \) if \( x + y + z = 3a \)

Show Hint

Use Lagrange multipliers to minimize or maximize multivariable functions with constraints.
Updated On: May 4, 2025
  • \( 3a \)
  • \( 3a^2 \)
  • \( 3a^3 \)
  • \( 3a^4 \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

We minimize \( x^2 + y^2 + z^2 \) subject to the constraint \( x + y + z = 3a \) using the method of Lagrange multipliers. Let: \[ f(x, y, z) = x^2 + y^2 + z^2,\quad g(x, y, z) = x + y + z - 3a \] Using the method: \[ \nabla f = \lambda \nabla g \Rightarrow 2x = \lambda,\ 2y = \lambda,\ 2z = \lambda \Rightarrow x = y = z \] Substitute in the constraint: \[ x + y + z = 3x = 3a \Rightarrow x = a \Rightarrow f = 3a^2 \]
Was this answer helpful?
0
0