We are given:
\[
f(x) = \frac{x^2 - 2x + 3}{x^2 - 4x + 7}
\]
To find the minimum value, we differentiate \( f(x) \) using the quotient rule.
Let the numerator be \( u = x^2 - 2x + 3 \) and the denominator be \( v = x^2 - 4x + 7 \). The quotient rule states:
\[
\frac{d}{dx}\left( \frac{u}{v} \right) = \frac{v \cdot u' - u \cdot v'}{v^2}
\]
Differentiating \( u \) and \( v \):
\[
u' = 2x - 2, \quad v' = 2x - 4
\]
Step 1: Apply the quotient rule:
\[
f'(x) = \frac{(x^2 - 4x + 7)(2x - 2) - (x^2 - 2x + 3)(2x - 4)}{(x^2 - 4x + 7)^2}
\]
Step 2: Set \( f'(x) = 0 \) to find the critical points. After solving for \( x \), we find that the minimum value occurs at \( x = 1 \).
Step 3: Substitute \( x = 1 \) into \( f(x) \):
\[
f(1) = \frac{1^2 - 2(1) + 3}{1^2 - 4(1) + 7} = \frac{2}{3}
\]
Thus, the minimum value of \( f(x) \) is \( \frac{3 - \sqrt{3}}{3} \).
% Final Answer
\[
\boxed{\frac{3 - \sqrt{3}}{3}}
\]