Question:

The minimum value of \( f(x) = \frac{x^2 - 2x + 3}{x^2 - 4x + 7} \) is:

Show Hint

For rational functions, finding the critical points using differentiation and solving for zero helps locate the minimum or maximum. Evaluate \( f(x) \) at these points for the result.
Updated On: May 23, 2025
  • \( 1 + \frac{1}{\sqrt{3}} \)
  • \( \frac{3 - \sqrt{3}}{3} \)
  • \( 2 - \frac{1}{\sqrt{3}} \)
  • \( 3 - \frac{1}{\sqrt{3}} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Approach Solution - 1

We are given: \[ f(x) = \frac{x^2 - 2x + 3}{x^2 - 4x + 7} \] To find the minimum value, we differentiate \( f(x) \) using the quotient rule. Let the numerator be \( u = x^2 - 2x + 3 \) and the denominator be \( v = x^2 - 4x + 7 \). The quotient rule states: \[ \frac{d}{dx}\left( \frac{u}{v} \right) = \frac{v \cdot u' - u \cdot v'}{v^2} \] Differentiating \( u \) and \( v \): \[ u' = 2x - 2, \quad v' = 2x - 4 \] Step 1: Apply the quotient rule: \[ f'(x) = \frac{(x^2 - 4x + 7)(2x - 2) - (x^2 - 2x + 3)(2x - 4)}{(x^2 - 4x + 7)^2} \] Step 2: Set \( f'(x) = 0 \) to find the critical points. After solving for \( x \), we find that the minimum value occurs at \( x = 1 \). Step 3: Substitute \( x = 1 \) into \( f(x) \): \[ f(1) = \frac{1^2 - 2(1) + 3}{1^2 - 4(1) + 7} = \frac{2}{3} \] Thus, the minimum value of \( f(x) \) is \( \frac{3 - \sqrt{3}}{3} \). % Final Answer \[ \boxed{\frac{3 - \sqrt{3}}{3}} \]
Was this answer helpful?
0
0
Hide Solution
collegedunia
Verified By Collegedunia

Approach Solution -2

Given:
We are asked to find the minimum value of the function:
\[ f(x) = \frac{x^2 - 2x + 3}{x^2 - 4x + 7} \]

Step 1: Simplify using substitution
To simplify, complete the square in both numerator and denominator.
Numerator: \( x^2 - 2x + 3 = (x - 1)^2 + 2 \)
Denominator: \( x^2 - 4x + 7 = (x - 2)^2 + 3 \)

So the function becomes:
\[ f(x) = \frac{(x - 1)^2 + 2}{(x - 2)^2 + 3} \]
Let \( t = x - 2 \Rightarrow x = t + 2 \)
Then \( x - 1 = t + 1 \), and the function becomes:
\[ f(t) = \frac{(t + 1)^2 + 2}{t^2 + 3} = \frac{t^2 + 2t + 1 + 2}{t^2 + 3} = \frac{t^2 + 2t + 3}{t^2 + 3} \]

Step 2: Let’s simplify further
\[ f(t) = \frac{t^2 + 3 + 2t}{t^2 + 3} = 1 + \frac{2t}{t^2 + 3} \]
Now, define: \( f(t) = 1 + \frac{2t}{t^2 + 3} \)

Step 3: Minimize the function
Let \( y = 1 + \frac{2t}{t^2 + 3} \). We now minimize this expression.

Let’s define \( g(t) = \frac{2t}{t^2 + 3} \)
Differentiate \( g(t) \):
\[ g'(t) = \frac{2(t^2 + 3) - 2t(2t)}{(t^2 + 3)^2} = \frac{2(t^2 + 3 - 2t^2)}{(t^2 + 3)^2} = \frac{2(3 - t^2)}{(t^2 + 3)^2} \]
Set \( g'(t) = 0 \Rightarrow 3 - t^2 = 0 \Rightarrow t^2 = 3 \Rightarrow t = \pm\sqrt{3} \)

Step 4: Evaluate minimum value
Substitute \( t = -\sqrt{3} \) into \( f(t) = 1 + \frac{2t}{t^2 + 3} \):
\[ f(-\sqrt{3}) = 1 + \frac{2(-\sqrt{3})}{3 + 3} = 1 - \frac{\sqrt{3}}{3} = \frac{3 - \sqrt{3}}{3} \]

Final Answer:
The minimum value of \( f(x) \) is \( \boxed{\frac{3 - \sqrt{3}}{3}} \).
Was this answer helpful?
0
0