Let $ \mathbb{R} $ denote the set of all real numbers. Let $ a_i, b_i \in \mathbb{R} $ for $ i \in \{1, 2, 3\} $.
Define the functions $ f: \mathbb{R} \to \mathbb{R},\ g: \mathbb{R} \to \mathbb{R},\ h: \mathbb{R} \to \mathbb{R} $ by:
$$
f(x) = a_1 + 10x + a_2x^2 + a_3x^3 + x^4,\quad
g(x) = b_1 + 3x + b_2x^2 + b_3x^3 + x^4,
$$
$$
h(x) = f(x+1) - g(x+2)
$$
If $ f(x) \ne g(x) $ for every $ x \in \mathbb{R} $, then the coefficient of $ x^3 $ in $ h(x) $ is: