Step 1: Let a point on the curve be $(x,\,y)$ where
\[
y=x^2-4
\]
Step 2: Distance of this point from the origin is:
\[
D=\sqrt{x^2+y^2}
\]
To minimize $D$, minimize $D^2$:
\[
D^2=x^2+(x^2-4)^2
\]
Step 3: Simplify:
\[
D^2=x^2+x^4-8x^2+16
= x^4-7x^2+16
\]
Step 4: Differentiate with respect to $x$:
\[
\frac{d(D^2)}{dx}=4x^3-14x
\]
Set derivative equal to zero:
\[
4x^3-14x=0
\Rightarrow 2x(2x^2-7)=0
\]
Step 5: Critical points:
\[
x=0,\quad x=\pm\sqrt{\frac{7}{2}}
\]
Step 6: Evaluate $D^2$ at these points:
For $x=0$:
\[
D^2=16
\]
For $x^2=\frac{7}{2}$:
\[
D^2=\left(\frac{7}{2}\right)^2-7\left(\frac{7}{2}\right)+16
=\frac{49}{4}-\frac{49}{2}+16
=\frac{19}{2}
\]
Step 7: Minimum distance:
\[
D=\sqrt{\frac{19}{2}}
\]