The mean of the density function is \(f(x) = \lambda e^{-\lambda x}, x > 0\) is ____ .
The probability distribution of a random variable X is given by
| X | 0 | 1 | 2 |
|---|---|---|---|
| P(X) | \(1 - 7a^2\) | \(\tfrac{1}{2}a + \tfrac{1}{4}\) | \(a^2\) |
If \(a > 0\), then \(P(0 < X \leq 2)\) is equal to
\[ f_\theta(x) = f(x - \theta), \quad -\infty<x<\infty, \]
where \( -\infty<\theta<\infty \) and \( f(-x) = f(x) \) for \( -\infty<x<\infty \). For testing\[ H_0: \theta = 1.2 \quad \text{against} \quad H_1: \theta \neq 1.2, \]
let \( T^+ \) denote the Wilcoxon Signed-rank test statistic. If \( \eta \) denotes the probability of the event \( \{T^+<50\} \) under \( H_0 \), then \( 32\eta \) equals\[ \underline{\hspace{2cm}} \]
(round off to 2 decimal places).