The correct answer is (C): \(5544\)
The sum of possible even digit numbers in the form aabb is \(1100 + 1122 + 1144 1166 + 1188 + 2200 + 2222 + 2288 +\) .......\(9900 + 9922 + 9988\) i.e. (\(45\) numbers)
\(⇒ 1100+1100+1100+1100+1100+22+44+66+88+2200+2200+2200+2200+2200+22+44+66+88+…\)\(+9900+9900+9900+990+9900+22+44+66+88\)
\(⇒ 5(1100+2200+.....9900)+9(22+44+66+88)5×1100(1+2+....9)+9×22(1+2+3+4)\)
\(⇒ 5500(45) + 45 × 44 = 45(5544)\)
Hence mean = \(5544\)
The first 4-digit even number in the form 'aabb' is \( 1100 \).
The last 4-digit even number in the form 'aabb' is \( 9988 \).
To find the mean, we use the formula:
\[ \text{Mean} = \frac{\text{Sum of all numbers}}{\text{Total number of numbers}} \]
So, the sum of all numbers is:
\[ \text{Sum} = \frac{(1100 + 9988)}{2} \]
\[ \text{Sum} = \frac{11088}{2} \]
\[ \text{Sum} = 5544 \]
And, the total number of numbers is:
\[ \text{Total number of numbers} = \frac{(9988 - 1100)}{100} + 1 \]
\[ \text{Total number of numbers} = \frac{8888}{100} + 1 \]
\[ \text{Total number of numbers} = 88 + 1 \]
\[ \text{Total number of numbers} = 89 \]
So, the mean of all 4-digit even numbers of the form 'aabb', where \( a > 0 \), is:
\[ \text{Mean} = \frac{5544}{89} = 62.337 \]
Therefore, the required mean is \( \boxed{5544} \).