Let the incorrect mean be \(\mu'\) and standard deviation be \(\sigma'\).
We have:
\(\mu' = \frac{\sum z_i}{15} = 12 \implies \sum z_i = 15 \times 12 = 180.\)
After correcting the value:
\(\sum z_i = 180 - 10 + 12 = 182.\)
Corrected mean:
\(\mu = \frac{182}{15}.\)
Also:
\(\sigma'^2 = \frac{\sum z_i^2}{15} - \mu'^2.\)
Given \(\sigma' = 3\):
\(\sigma'^2 = 9 \implies \frac{\sum z_i^2}{15} - 9 = 9 \implies \sum z_i^2 = 15 \times 9 + 180^2.\)
Corrected variance:
\(\sigma^2 = 2339.\)
The required value is:
\(15 \left(\mu^2 + \sigma^2 + \sigma^2\right) = 2521.\)
The Correct answer is: 2521
Class | 0 – 15 | 15 – 30 | 30 – 45 | 45 – 60 | 60 – 75 | 75 – 90 |
---|---|---|---|---|---|---|
Frequency | 11 | 8 | 15 | 7 | 10 | 9 |
Variance of the following discrete frequency distribution is:
\[ \begin{array}{|c|c|c|c|c|c|} \hline \text{Class Interval} & 0-2 & 2-4 & 4-6 & 6-8 & 8-10 \\ \hline \text{Frequency (}f_i\text{)} & 2 & 3 & 5 & 3 & 2 \\ \hline \end{array} \]
Let $ f(x) = \begin{cases} (1+ax)^{1/x} & , x<0 \\1+b & , x = 0 \\\frac{(x+4)^{1/2} - 2}{(x+c)^{1/3} - 2} & , x>0 \end{cases} $ be continuous at x = 0. Then $ e^a bc $ is equal to
Total number of nucleophiles from the following is: \(\text{NH}_3, PhSH, (H_3C_2S)_2, H_2C = CH_2, OH−, H_3O+, (CH_3)_2CO, NCH_3\)