In statistics, the relationship between the mean, median, and mode is given by:
\[ \text{Mode} = 3 \times \text{Median} - 2 \times \text{Mean} \]
Substitute the given values:
\[ \text{Mode} = 3 \times 23 - 2 \times 21 = 69 - 42 = 27 \]
Thus, the mode of the data is 27.
Class : | 4 – 6 | 7 – 9 | 10 – 12 | 13 – 15 |
Frequency : | 5 | 4 | 9 | 10 |
Marks : | Below 10 | Below 20 | Below 30 | Below 40 | Below 50 |
Number of Students : | 3 | 12 | 27 | 57 | 75 |
\(\text{Length (in mm)}\) | 70-80 | 80-90 | 90-100 | 100-110 | 110-120 | 120-130 | 130-140 |
---|---|---|---|---|---|---|---|
\(\text{Number of leaves}\) | 3 | 5 | 9 | 12 | 5 | 4 | 2 |