The maximum volume (in cu. units) of the cylinder which can be inscribed in a sphere of radius 12 units is:
Show Hint
To maximize the volume of a cylinder inscribed in a sphere, use the relation between radius and height of the sphere, and then differentiate to find the maximum.
Step 1: {Find the relation between radius and height of the cylinder inscribed in a sphere}
Let the radius of the cylinder be \( r \) and height \( h \). The equation for the sphere is \( r^2 + \left(\frac{h}{2}\right)^2 = 12^2 \), or:
\[
r^2 + \frac{h^2}{4} = 144.
\]
\[\Rightarrow V = 144\pi h - \frac{\pi}{4}h^3\]
\[\Rightarrow \frac{dV}{dh} = 144\pi - \frac{3\pi}{4}h^2\]
\[\Rightarrow \frac{dV}{dh} = 0 \Rightarrow 144\pi = \frac{3\pi}{4}h^2\]
\[\Rightarrow h^2 = 48 \times 4 \Rightarrow h = 8\sqrt{3}\]
\[\therefore 12^2 = r^2 + 48 \Rightarrow r^2 = 96\]
\[{Volume} = \pi r^2 h = \pi \times 96 \times 8\sqrt{3} = 768\sqrt{3}\pi { cm}^3.\]
By solving the optimization problem, the maximum volume comes out to be
\[ 768 \sqrt{3} \pi)\]