Solve the following LPP graphically: Maximize: \[ Z = 2x + 3y \] Subject to: \[ \begin{aligned} x + 4y &\leq 8 \quad \text{(1)} \\ 2x + 3y &\leq 12 \quad \text{(2)} \\ 3x + y &\leq 9 \quad \text{(3)} \\ x &\geq 0,\quad y \geq 0 \quad \text{(non-negativity constraints)} \end{aligned} \]
Plot all three lines and shade the region that satisfies all constraints including \( x \geq 0 \) and \( y \geq 0 \).
Point | \( Z = 2x + 3y \) |
---|---|
(0, 0) | 0 |
\( \left( \frac{24}{5}, \frac{4}{5} \right) \) | \[ Z = 2 \cdot \frac{24}{5} + 3 \cdot \frac{4}{5} = \frac{48 + 12}{5} = \frac{60}{5} = \boxed{12} \] |
\( \left( \frac{15}{7}, \frac{18}{7} \right) \) | \[ Z = \frac{30}{7} + \frac{54}{7} = \frac{84}{7} = \boxed{12} \] |
\( \left( \frac{28}{11}, \frac{15}{11} \right) \) | \[ Z = \frac{56}{11} + \frac{45}{11} = \frac{101}{11} \approx 9.18 \] |
Maximum value of \( Z = 2x + 3y \) is \[ \boxed{12} \] at two corner points: \[ \left( \frac{24}{5}, \frac{4}{5} \right) \quad \text{and} \quad \left( \frac{15}{7}, \frac{18}{7} \right) \]