Step 1: Identify the feasible region.
The constraints define a bounded polygon in the first quadrant given by
\[
0 \le x \le 3,\quad 0 \le y \le 3,\quad x+y \le 5
\]
Step 2: Find corner points of the region.
The feasible corner points are
\[
(0,0),\ (3,0),\ (3,2),\ (2,3),\ (0,3)
\]
Step 3: Evaluate \(Z\) at each corner point.
\[
Z(0,0)=0
\]
\[
Z(3,0)=30
\]
\[
Z(3,2)=10(3)+25(2)=30+50=80
\]
\[
Z(2,3)=10(2)+25(3)=20+75=95
\]
\[
Z(0,3)=75
\]
Step 4: Determine the maximum value.
The maximum value of \(Z\) is \(95\), attained at \((2,3)\).